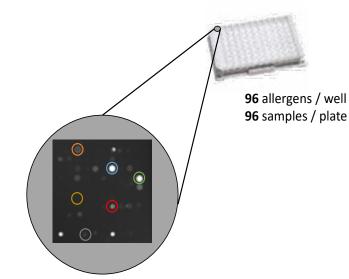
Microarray - Food - Screen

Microarray für die qualitative Bestimmung von spezifischem IgG4 gegen Nahrungsmittel-Antigene in humanem Serum oder Plasma

Microarray Spezifikationen

- ✓ Hoher Probendurchsatz
 - 96 Patienten mit bis zu 96 Allergenen in einer ELISA Platte
- Reduzierter Proben- und Reagenzienverbrauch
 - 96 mal reduzierter Reagenzienverbrauch
 - nur 10µL Probenmaterial wird benötigt
- Reduzierte Arbeitszeit aufgrund von parallelem Handling von 96 Proben


Immunglobuline (Ig) der IgG4-Untergruppe scheinen eine wichtige Rolle in der humanen Immunreaktion gegen Nahrungsmittelantigene zu spielen. Beim Reizdarmsyndrom (engl.: Irritable bowel syndrome; IBS) zeigen sich Symptome, welche vergleichbar mit Reaktionen sind, die durch IgE hervorgerufen werden, ohne dass IgE-Antikörper gefunden werden konnten. Stattdessen konnten spezifische IgG4-Antikörper nachgewiesen werden. Auch konnte gezeigt werden, dass IBS-Patienten eine signifikante Verbesserung der Symptome nach einer "Nahrungsmittelspezifisches IgG4"-gerichteten Ausschluss-Diät verspürten. Serum-IgG4-Antikörper-Tests könnten eine objektive und schnelle Methode für die Auswahl der Ausschluss-Diät zur Behandlung dieser Patienten darstellen. Daher gewinnt die Messung von Nahrungsmittel-spezifischen IgG4-Antikörpern immer mehr an Bedeutung.

Das Prinzip des Microarray-Food-Screen basiert auf dem ELISA kombiniert mit der Microarray-Technologie.

96 Nahrungsmittel-Antigene wurden in jede Kavität der Mikrotiterplatte gespottet. Verdünntes Patientenserum oder -plasma wird in den Antigen-gespotteten Kavitäten inkubiert. Das spezifische IgG4 der Patientenproben bindet nun an die auf die Oberfläche gekoppelten Antigene. Nach der Zugabe von anti-IgG4-Enzym-Konjugat bildet sich an der Oberfläche ein Antigen/IgG4/Anti-IgG4-HRP-Komplex. Dabei entspricht die Menge des gebundenen Antikörpers der Menge an Peroxidase an der entsprechenden Position, welche durch Inkubation mit präzipitierendem Tetramethylbenzidin (TMB) als Substrat als blau gefärbte Antigen-Punkte detektiert werden können.

Microarray REF 10106-M ₹ 96

Nach einem Waschschritt kann die Optische Dichte jedes Spots mit einem speziellen Microarray-Plattenleser gemessen werden. Parallel zu den Patientenproben wird eine Kalibrierkurve ermittelt, an welcher die Konzentration der Nahrungsmittel-spezifischen IgG4-Antikörper ausgelesen werden kann. Die Konzentration ist innerhalb des Messbereichs direkt proportional zur Intensität der gefärbten Punkte.

Abbildung 1Microarray System

Abbildung 2Gespottete Mikrotiterplatte

Leistungsmerkmale

Die Intra-Assay, Inter-Assay und Lot-to-Lot Variationen wurden innerhalb der folgenden Spezifikationen gefunden:

Intra-Assay Variation	< 15%
Inter-Assay Variation	< 25%
Inter-Batch Variation	< 30%

Evaluierung der Ergebnisse

Unter Nutzung der Kalibrierkurve werden die Konzentrationen der Proben folgendermaßen berechnet und evaluiert:

- < 2000 U/mL IgG4 Nahrungsmittel kann unbe grenzt konsumiert werden
- > 2000 < 5000 U/mL lgG4 Nahrungsmittel ist ein- bis zweimal pro Woche erlaubt, wechselnd
- > 5000 U/mL IgG4 Nahrungsmittel für mindestens 3 Monate meiden

Die Interpretation der Ergebnisse muss individuell für jeden Patienten und unter Beratung eines Arztes oder eines professionellen Ernährungswissenschaftlers erfolgen!

Diagnostische Sensitivität und Spezifität

Die Ergebnisse des Testes sollten immer im Zusammenhang mit der klinischen Situation des Patienten und seiner Anamnese beurteilt werden.

In der Evaluierung wurden eine Gesamtsensitivität und -spezifität (im Vergleich zu einem kommerziell erhältlichen ELISA für die Bestimmung von Nahrungsmittelspezifischem IgG4) von jeweils 94% ermittelt.

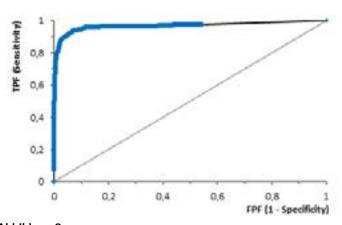


Abbildung 3 ROC Analyse für den Microarray Nahrungsmittel-Screen (Dr. Fooke Laboratorien GmbH) gegen einen kommerziell erhältlichen ELISA mit n=3009 Ergebnissen.

Literatur

- 1. Jarvinen KM, Chatchatee P, Bardina L, Beyer K, Sampson HA: IgE and IgG Binding Epitopes on alpha-Lactalbumin and beta-Lactoglobulin in Cow's Milk Allergy. Int Arch Allergy Immunol 2001, 126:111-118.
- 2. Chatchatee P, Jarvinen KM, Bardina L, Vila L, Beyer K, Sampson HA: Identification of IgE- and IgG-binding epitopes on alpha(s1)-casein: Differences in patients with persistent and transient cow's milk allergy. J Allergy Clin Immunol 2001, 107:379-383.
- 3. Kruszewski J, Raczka A, Klos M, Wiktor-Jedrzejczak W: High Serum Levels of Allergen Specific IgG-4 (aslgG-4) for Common Food Allergens in Healthy Blood Donors. Archivum Immunologiae et Therapiae Experimentalis 1994, 42:259-261.
- 4. Zar S, Mincher L, Benson MJ, Kumar D: Food-specific IgG4 antibody-guided exclusion diet improves symptoms and rectal compliance in irritable bowel syndrome. Scand J Gastroenterol 2005, 40:800-807.
- 5. Zar S, Benson MJ, Kumar D: Food-specific serum IgG4 and IgE titers to common food antigens in irritable bowel syndrome. Am J Gastroenterol 2005, 100:1550-1557.
- 6. Noh G, Ahn HS, Cho NY, Lee S, Oh JW: The clinical significance of food specific IgE/OgG4 in food specific atopic dermatitis. Pediatr Allergy Immunol 2007, 18: 63-70

